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Extended Abstract 
This article presents a simple, yet general, model that 

explains the scaling properties observed in real cluster-
size distributions. 

The model defines a threshold response for an agent 
expressed by 
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Equation (1) gives the probability that an agent actu-
ates depending on its stimulus level σ and σc is some 
threshold value. Such characteristic is akin to neuronal 
stimulation. Furthermore, equation (1) states that an 
agent may override the consequence of σ>σc by a 
complementary “choice” of not performing an action. 
This is reflected by β which may be less than 1. Equa-
tion (1) therefore incorporates the ability of an agent to 
decide. Agents are distributed in a d-dimensional lat-
tice of length L. A fraction p of the agent population is 
designated to be unresponsive. Unresponsive agents are 
characterized by β=0 such that P(σ,β)=0 even if σ>σc. 
These agents may be thought of as impurities in the 
lattice. The value of p is varied between 0 and 1. 

The lattice is constantly bombarded by external stim-
uli (e.g., environmental conditions or public informa-
tion in the form of advertisements, and the like). The 
consequence of this is that at each time step of the nu-
merical experiment, σ→σ+1 for all agents (i.e., stimu-
lus levels are raised by a unit). 

An agent is then randomly chosen, say an agent at 
cell i,j in a d=2 lattice, to behave according to (1) with 
β=1. Hence, if σ(i,j) exceeds σc(i,j) then this agent out-
puts a particular action A. Allow us to distinguish this 
chosen agent as a harbinger. The harbinger is the ini-
tiator of an action. By the performance of A the har-
binger’s stimulus level decreases: σ(i,j)→σ(i,j)−2d, as 
though releasing tension. Meanwhile, the stimulus 
level of each of the harbinger’s 2d nearest-neighbors is 
increased by a unit due to their observance of A. For a 
responsive neighbor, sufficient stimulation (>σc) result-
ing from the observance of A makes it actuate A with a 
probability β. Let us assume that β is of a particular 
value α, wherein α is defined as the allelomimesis in-
dex. In contrast, any amount of stimulation brought 
about by the observance of A will have no effect on an 
unresponsive neighbor. 

The harbinger’s neighbors in turn pass around the in-
formation to their corresponding neighbors by actuat-
ing A. The dynamics of action propagation can be 
summarized as two fundamental processes: (i) the se-
lection of a harbinger that initiates an action, and (ii) 
propagation of action through nearest-neighbor connec-
tions. Process (ii) is repeated until the action initiated 
by the harbinger ceases to propagate. All agents that 
actuate or have actuated A are considered to belong to 
a cluster and the total number of these agents corre-
sponds to the size s of the cluster. The resulting distri-
bution f(s) is highly-dependent on α and p. 

  
Figure 1 Clusters that result for α=1and p=0 

 
Figure 1 illustrates the morphology of clusters result-

ing from the model. These clusters apparently exhibit 
fractal structures that were produced by models of ur-
ban growth through diffusion-limited aggregation [1]. 

The model is able to fit cluster-size distributions of 
actual clustering systems in nature. This is done by 
simply tuning the values of α and p. Our significant 
finding is that α have high-values for animals implying 
that allelomimesis is strongly expressed whereas α~0.3 
for human beings. Details of the data analysis method 
utilized in relating the model with data gathered from 
multifarious real clustering is discussed in Ref. 2. 
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Abstract 

The allelomimesis clustering model is based on 
only two parameters: a local parameter α that 
represents the probability of nearest-neighbor 
copying and a global parameter p that represents the 
fraction of unresponsive agents. The model results 
into the formation of clusters of agents, the sizes of 
which obey a distribution that is determined by the 
values of α and p. Several experimental data are 
fitted by tuning the two parameters. In particular, the 
significance of the value of α  that corresponds to an 
experimental data is discussed and is justified 
according to behavioral context. Recommendations 
for possible extensions of the model are also 
enumerated.  

1. Introduction 
The penultimate hallmark of complex systems is 

the principle of emergence – macroscopic regularity 
of the system arising from apparently irregular 
(disordered) microscopic interactions between the 
system’s constituents. Among the most commonly 
observed of these emergent properties is clustering. 

Clusters in nature exist in different sizes. An 
interesting and somewhat unexpected observation is 
the regularity of the statistical distribution of cluster 
sizes, which generally obeys what is known as a 
power-law. If we denote by s the size of a cluster and 
by f(s) the frequency of occurrence of s (i.e., the 
number of times that a particular value of s is tallied), 
then one would witness that the plot of f(s) versus s in 
double logarithmic scale is a decreasing straight line. 
The slope of this line corresponds to the exponent of 
the power law. Let us refer to the value of this slope 
as τ. 

Power-law behavior is a well-known result in the 
area of complex systems. This article presents a 
simple, yet general, mechanism that leads to this 
power-law behavior. 

In section 2, a phenomenological model based on 
allelomimetic behavior is discussed. Allelomimesis is 
the tendency of individuals to imitate its neighbors; 
hence, allelomimetic behavior is the best candidate as 
local interaction that could lead to the formation of 
clusters. The results of the model are discussed in 

Section 3. A comparison of these results with several 
cluster systems found in nature is also presented. A few 
recommendations for further extension of this study are 
pointed out in Section 4.  

2. The Clustering Model 

2.1 Behavior of a single agent 
The probability that an agent “performs” a certain 

“action” is described as follows: 
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wherein σ is the total stimulus received by an agent 
(both from its environment and its neighboring agents) 
and σc is an arbitrary threshold stimulus level. Equation 
(1) means that an agent actuates if its stimulus level 
exceeds the threshold. Such characteristic is akin to 
neuronal stimulation [1]. 

In reality, however, an agent may override the 
consequence of σ>σc by a complementary “choice” of 
not performing an action. Let us assume that the 
probability the agent will not actuate if σ>σc is 1−β. 
Hence, (1) may be rewritten in the following form: 
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Equation (2) incorporates the ability of an agent to 
decide. 

Generally, β and σc may vary among agents. But to 
make the model as simple as possible, it is assumed 
that β is a mean value over a population of agents, 
hence, β is a constant with respect to a particular agent 
population. However, β is allowed to vary between 
different populations. On the other hand, two cases are 
considered in assigning the value of σc – it is either 
fixed (σc = 4) for all agents or it varies within a range 
(2 ≤ σc ≤ 16) among agents. 

 

2.2 Lattice of agents 
Agents are distributed in a d-dimensional lattice of 

length L consisting of Ld discrete cells. A cell may only 
accommodate a single agent. Thus, Ld also corresponds 
to the size of the agent population. 
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A fraction p of the agent population is designated to 
be unresponsive. Unresponsive agents are 
characterized by β=0 such that P(σ,β)=0 even if 
σ>σc. These agents may be thought of as impurities 
in the lattice. The value of p is varied between 0 and 
1. 

 

2.3 Dynamics of action propagation 
The lattice is constantly bombarded by external 

stimuli (e.g., environmental conditions or public 
information in the form of advertisements, and the 
like). The consequence of this is that at each time 
step of the numerical experiment, σ→σ+1 for all 
agents (i.e., stimulus levels are raised by a unit). 

An agent is then randomly chosen, say an agent at 
cell i,j in a d=2 lattice, to behave according to (1). 
Hence, if σ(i,j) exceeds σc(i,j) then this agent outputs 
a particular action A. Otherwise, nothing happens and 
another agent is randomly chosen. Allow us to 
distinguish this chosen agent as a harbinger. The 
harbinger is the initiator of an action. Once a 
harbinger is selected, the bombardment of external 
stimuli is momentarily paused to allow us to focus on 
the consequence of the harbinger’s action to the 
entire lattice. Furthermore, we assume that there can 
only be one harbinger at a time but any agent is a 
potential harbinger at any given time. 

By the performance of A the harbinger’s stimulus 
level decreases: σ(i,j)→σ(i,j)−2d, as though releasing 
tension. Meanwhile, the stimulus level of each of the 
harbinger’s 2d nearest-neighbors is increased by a 
unit due to their observance of A. These neighbors 
behave according to (2) to decide whether or not to 
mimic the harbinger and actuate A. For a responsive 
neighbor, sufficient stimulation (>σc) resulting from 
the observance of A makes it actuate A with a 
probability β. Let us assume that β is of a particular 
value α. In contrast, any amount of stimulation 
brought about by the observance of A will have no 
effect on an unresponsive neighbor. 

The harbinger’s neighbors in turn pass around the 
information to their corresponding neighbors by 
actuating A. This propagation continues up to the last 
agent that performs A without influencing its 
corresponding nearest neighbors. 

The parameter α is defined as the allelomimesis 
index. Its value is tuned between 0 and 1. On one 
hand, α=0 is equivalent to setting p=1, i.e. all agents 
in the population are unresponsive to their neighbors; 
hence, non-copying or non-allelomimetic. On the 
other hand, α=1 implies a highly-allelomimetic 
population of agents wherein imitation of neighbors 
is a big factor that promotes clustering. 

The dynamics of action propagation can be 
summarized as two fundamental processes: (i) the 
selection of a harbinger that initiates an action, and (ii) 
propagation of action through nearest-neighbor 
connections. 

 

2.4 Cluster and cluster size 
Process (ii) is repeated until the action initiated by the 

harbinger ceases to propagate. All agents that actuate 
or have actuated A are considered to belong to a cluster 
and the total number of these agents corresponds to the 
size of the cluster s. Subsequently, the bombardment of 
external stimuli is resumed for the proceeding time 
step. Process (i) results to the initiation of another 
action and process (ii) propagates this action through 
the lattice, hence, establishing the formation of another 
cluster. By repeating processes (i) and (ii) over several 
time steps, one generates different values of s. This 
allows one to deduce the statistical distribution f(s). 

3. Results and Discussion 

3.1 Numerical simulations 
Figure 1 illustrates the morphology of clusters at 

different settings of the parameters α and p. These 
clusters apparently exhibit fractal structures resembling 
those that were produced by models of urban growth 
through diffusion-limited aggregation [2]. 

Let us first deal with the effect of varying α by 
setting p = 0. Figure 2 plots the power-law cluster size 
distribution (CSD) in double logarithmic scale for 
different values of α. Notice how the lines steepen with 
increasing value of α, indicating that the scaling 
exponent τ is negatively correlated with the parameter 
α. It is expected that τ→∞ as α→0, consistent with a 
dirac-delta CSD centered at s=1 for α=0 (i.e., no 
clusters are formed). 

To show the effect of the parameter p on the CSD, 
we fix α to a value of 1. Figure 3 exhibits a distortion 
of the CSD at large values of s. The degree of such 
distortion intensifies with increasing p. 

Considering that thresholds σc may vary among 
agents, we compare the set of CSDs (with different α 
and p = 0) for the case wherein 2≤σc ≤ 16 with the set 
for which σc=4. Figure 4 plots the CSDs as data points 
in the former case and as broken lines in the latter case. 
There is no observable difference and this implies that 
the exact value of σc of an agent does not affect the 
CSD. Hence, the CSD is robust to variations of σc 
within an agent population. 

 



3.2 Comparison with data for real systems 
We fit our model to different CSDs taken from 

experimental observations of actual clusters. The 
goodness-of-fit is measured in terms of the mean 
square error (MSE) between the data and the curve 
generated from the model. Figures 5 and 6 present 
data on four animal systems and four distinct human 
cluster systems, respectively. 

Remarkably, α is high for animal systems (except 
for Serengeti lions) implying that allelomimesis is 
strongly expressed in animals. According to Wagner 
and Danchin, “conspecific copying” (or 
allelomimesis) is a ubiquitous mechanism behind the 
formation of aggregates such as leks and colonies [3]. 
Bonabeau and Dagorn showed that “biosocial 
attraction” (another form of allelomimesis) promotes 
schooling in fishes [4]. Parrish and Keshet further 
proposed that allelomimesis is a generic mechanism 
that maintains the cluster as a cohesive unit [5]. 
Indeed, ecological evidence for a high value of α in 
the animal kingdom is compelling. The seemingly 
low α (=0.1) for Serengeti lions is compensated by 
the high-value of p. Such disparity may be explained 
by the fact that the lions that were observed by 
Schaller were nomadic [6]. This means that they are 
likely to wander alone or in small groups, hence, 
even though lions may be considered highly-social 
(high p), being nomadic disrupts the information flow 
between lions resulting in low α. A comprehensive 
discussion of the deduced values of α and p is found 
in Ref. 7. 

The value of α for human cluster systems is low as 
compared to animal systems, implying that 
allelomimesis is only moderately expressed in human 
beings. This can be justified by considering that 
humans are generally more highly cognitive than 
animals, which consequently overrides their 
instinctive tendency to be allelomimetic. 
Furthermore, telecommunication technology (which 
only humans are capable of) diminishes the 
requirement of information transfer through nearest-
neighbor connections such as allelomimesis. 
Interestingly, α is not significantly different among 
distinct human cluster systems (α∼0.3). This result is 
quite expected because even though we consider 
clusters of cities, of households or of employees to be 
distinct from one another, one fact remains common 
between them – these systems are all made up of 
human beings. It would be worthwhile to investigate 
the origin of such seemingly universal value of α 
from a psychological point of view.  

4. Recommendations 
The model due to its inherent simplicity has cut down 

on details as much as possible so that it can be 
considered generic, hence, applicable to a wide variety 
of systems. Here, we suggest some minor points of 
modification to allow a more realistic description.  

The stimulation on an agent due to constant 
bombardment of external factors may not necessarily 
be equal to unity (i.e., σ→σ+1). It can be expressed as 
σ→σ+η, where η represents a positive Poisson number 
that appropriately describes the time fluctuation of the 
amount of external stimuli. Furthermore, subsequent 
stimulation of neighboring agents may not necessarily 
decrease the stimulus level of the harbinger by an 
amount that is equal to the number of its nearest 
neighbors. That is, one can write σ→σ−ε, where ε is a 
positive number derived from a Gaussian or a Binomial 
probability distribution. It follows that the ensuing 
stimulation of responsive neighbors that observe the 
actuation of the harbinger can be expressed as 
σn→σn+δn where the subscript n represents the nearest-
neighbor and ∑nδn = ε. Note here that δn could either be 
positive or negative, implying that the stimulation is 
excitatory or inhibitory, respectively [1]. 

5. Conclusion 
A simple model of cluster formation is proposed to 

explain the cluster size distribution observed for 
various cluster systems in nature. The model consists 
of two mutually independent parameters, namely α and 
p. The value of α represents the probability that an 
agent mimics the action of its nearest-neighbors 
whereas p is the fraction of unresponsive agents that 
characterizes the particular agent population. Resulting 
CSDs are highly-dependent on α and p. 

The model fits into experimental data corresponding 
to various cluster systems in nature. High value of α 
generally characterizes animal systems whereas α~0.3 
distinguishes human cluster systems. 

 
Figure 1 Clusters that result for α=1and p=0. 



 
Figure 2 CSD for different values of α at p=0. 

 
Figure 3 CSD at α=0 and different values of p. 

 
Figure 4 Comparison between imposing uniform 

threshold (σc=4) and random threshold (2≤σc≤16) 
for different values of α at p=0. 

 
Figure 5 Fitting the model to four different 

animal systems. A – Spotted dolphin, Stenella 
attenuata (α=0.75, p=0.3, MSE=0.00381); B – West 
Indian manatee, Trichecus manatus (α=1, p=0.45, 
MSE=0.00034); C – Wasp, Ropalidia fasciata 
(α=0.75, p=0.35, MSE=0.00059); D – Serengeti lion 
Panthera leo (α=0.1, p=0, MSE=0.08661). 

A

B 

C

D



 
Figure 6 Fitting the model to four distinct 

human cluster systems. A – Urban agglomerations 
of India, 1991 (α=0.32, p=0, MSE=0.00394); B – 
Major cities of Japan, 1994 (α=28, p=0, 
MSE=0.00021); C – Households/barrios of Metro 
Cebu, 2001 (α=0.31, p=0.25, MSE=0.00179); D – 
Firms/clusters of employees of U.S., 1997 (α=0.32, 
p=0, MSE=6.16504). 
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